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Summary. We define a surrogate end point as a measure or indicator of a biological process that
is obtained sooner, at less cost or less invasively than a true end point of health outcome and
is used to make conclusions about the effect of an intervention on the true end point. Prentice
presented criteria for valid hypothesis testing of a surrogate end point that replaces a true end
point. For using the surrogate end point to estimate the predicted effect of intervention on the
true end point, Day and Duffy assumed the Prentice criterion and arrived at two paradoxical
results: the estimated predicted intervention effect by using a surrogate can give more precise
estimates than the usual estimate of the intervention effect by using the true end point and the
variance is greatest when the surrogate end point perfectly predicts the true end point. Begg
and Leung formulated similar paradoxes and concluded that they indicate a flawed conceptual
strategy arising from the Prentice criterion. We resolve the paradoxes as follows. Day and Duffy
compared a surrogate-based estimate of the effect of intervention on the true end point with an
estimate of the effect of intervention on the true end point that uses the true end point.Their par-
adox arose because the former estimate assumes the Prentice criterion whereas the latter does
not. If both or neither of these estimates assume the Prentice criterion, there is no paradox.The
paradoxes of Begg and Leung, although similar to those of Day and Duffy, arise from ignoring
the variability of the parameter estimates irrespective of the Prentice criterion and disappear
when the variability is included. Our resolution of the paradoxes provides a firm foundation for
future meta-analytic extensions of the approach of Day and Duffy.
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1. Introduction

We define a surrogate end point as an end point that is obtained sooner, at less cost or less
invasively than a true end point and is used to make conclusions about the effect of intervention
on the true end point. Examples include a stage of cancer as a surrogate end point for death
from cancer or diastolic blood pressure as a surrogate end point for strokes. In the context of
randomized trials (which is the focus here), the objective is to use the surrogate end point to
make inference about the effect of an intervention on the true end point in an application trial
in which only the surrogate end point is observed. Before the use of the surrogate end point in
an application trial, it must be validated by using data from a trial with both surrogate and true
end points, which we call a validation trial.

Much early statistical work on surrogate end points focused on using the surrogate end point
to replace the true end point. Because the surrogate and true end points are on different scales
a direct comparison is meaningless. Therefore inference was confined to hypothesis testing.
In the situation of hypothesis testing, validation consists of showing that rejection of the null
hypothesis under the surrogate end point implies rejection of the null hypothesis under the true
end point in a validation trial. In a landmark paper, Prentice (1989) gave criteria when the null
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hypothesis under the true end point implies the null hypothesis under the surrogate end point
(so that rejecting the null hypothesis under the surrogate end point implies rejecting the null
hypothesis under the true end point). The key criterion, called the Prentice criterion by Begg
and Leung (2000), is that the distribution of the true end point conditional on the surrogate
end point does not also depend on the randomization group. Rejecting the Prentice criterion
indicates that the surrogate end point cannot validly replace the true end point. However, not
rejecting the Prentice criterion does not mean that the surrogate end point is validated. Con-
sequently, various summary measures (such as the proportion of treatment effect explained)
have been proposed when the Prentice criterion cannot be rejected (e.g. Freedman et al. (1992)).
A general difficulty with interpreting many of these summary measures is that they are not
directly linked to the effect of intervention on the true end point and, as a consequence, it is
difficult to specify a target value that indicates a validated surrogate end point.

Other statistical work on surrogate end points has focused on using a surrogate end point to
predict the effect of intervention on the true end point. The basic idea is to use data from one
or more previous trials to construct a model relating surrogate to true end points. The model
is then applied to data on the surrogate end point in the validation trial to predict the effect
of intervention on the true end point in the validation trial. (In a more complicated and more
informative variation of this approach, each trial from a set of previous trials is successively
selected as the validation trial and the remaining trials are used to fit the model. For simplicity
here, we consider only a single validation trial.) In this context, one can validate the surrogate
end point by comparing estimates and confidence intervals for

(a) the predicted effect of intervention on the true end point in the validation trial based on
the model and the surrogate end point in the validation trial and

(b) the direct estimate of the effect of intervention on the true end point.

If the confidence intervals are similar (where the degree of similarity depends on the applica-
tion), we say that the surrogate end point is validated and one can have more confidence in
using the surrogate end point to predict the effect of intervention on the true end point in the
application trial in which only the surrogate end point is observed.

Various types of model have been proposed for relating surrogate and true end points in one
or more previous trials. Some models have involved trial level statistics for surrogate and true
end points in multiple previous trials (e.g. Gail et al. (2000) and Buyse et al. (2000)). Other
models have involved individual level associations between surrogate and true end points, as
proposed by Morrison (1991) and Day and Duffy (1996) with a single previous trial. We find
this latter approach appealing for binary surrogate and true end points because no additional
assumptions are needed for modelling the association between surrogate and true end points,
unlike the situation with continuous surrogate and true end points. Current research involves
meta-analytic extensions of this approach with a random-effects component to capture vari-
ability between trials. However, it is necessary to resolve clearly the paradoxical results of Day
and Duffy (1996) that, if not addressed, could undermine the foundations for this proposed
meta-analytic approach.

Day and Duffy (1996) explicitly incorporated the Prentice criterion in their model and
obtained the paradoxical results that Begg and Leung (2000) attributed to a conceptual flaw
related to the Prentice criterion. We think that part of the confusion over these paradoxes is the
common mistaken belief that the Prentice criterion, which was proposed for valid hypothesis
testing, is necessary for valid estimation of the effect of intervention on the true end point based
on data from the surrogate end point. Baker and Kramer (2003) showed graphically that this
was not so. In particular, they showed that
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(a) the Prentice criterion corresponds to identical lines depicting the relationship of surrogate
to true end point in each randomization groups and

(b) predicting the effect of intervention on the true end point requires only correct prediction
of the aforementioned lines regardless of whether or not they are identical.

In Sections 2.3 and 3.2, we present formulae for predicting the effect of intervention on the true
end point that do not require the Prentice criterion.

The paper is organized as follows. In Section 2 we describe how the paradox in Day and
Duffy (1996) arises because the Prentice criterion is assumed in only one of two estimates being
compared. In Section 3, we explain how the paradoxes in Begg and Leung (2000), which are
similar to those in Day and Duffy (1996), arise for a different reason. We conclude that the
method of using the surrogate end point to predict the effect of intervention on the true end
point is not conceptually flawed.

2. Explaining the paradoxes in Day and Duffy (1996)

Day and Duffy (1996) compared the following two variances for the estimated effect of inter-
vention on the true end point in a validation trial with both surrogate and true end points:

(a) the variance of the estimated predicted effect of intervention on the true end point based
on the surrogate end point and

(b) the variance of the estimated effect of intervention on the true end point based on the
true end point.

In Section 2.1, we show that the paradoxes of Day and Duffy (1996) arise when the Prentice
criterion is assumed for (a) but not (b). In Section 2.2, we show that there is no paradox when
both (a) and (b) assume the Prentice criterion. In Section 2.3, we show that there is no paradox
when neither (a) nor (b) assumes the Prentice criterion.

2.1. Prentice criterion for only surrogate-based estimate
We present the approach of Day and Duffy (1996) with a different notation to improve the clar-
ity. Let T denote the true end point of cancer death .T =1/ or not .T =0/, S denote the surrogate
end point which is the category of tumour size at cancer detection, Z denote the intervention
group .Z=1/ or control group .Z=0/ and J denote the validation trial .J ≡validation/ or the
previous trial .J ≡previous/.

Day and Duffy (1996) assumed that the Prentice criterion is satisfied, namely pr.T = t|S = s,
Z = z, J = j/=pr.T = t|S = s, J = j/. Let

θs =pr.T =1|S = s, J ≡validation/,

πzs =pr.S = s|Z = z, J ≡validation/,

θÅ
s =pr.T =1|S = s, J ≡previous/,

πÅ
zs =pr.S = s|Z = z, J ≡previous/:

Also let nzst denote the number of subjects in the validation trial who are in group z with sur-
rogate s (even if not observed) and true end point t. Day and Duffy (1996) excluded from the
analysis subjects with no tumour detected and assumed that the same numbers of tumours are
detected in both randomization groups, namely N =n0++ =n1++, where ‘+’ in a subscript indi-
cates summation over the corresponding index. Because the number of subjects with a tumour
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is small, we assume that nzst follows a Poisson distribution. Therefore nzs+ ∼ Poisson.Nπzs/,
nz+1 ∼Poisson.N Σs πzsθs/ and nzs1|nzs+ ∼binomial.θs, nzs+/. The end point that is of interest
is the difference in the logarithm of expected numbers of cancer deaths among subjects with
a tumour in each group: ∆= log{E.n1+1/}− log{E.n0+1/}: For mathematical convenience we
write ∆= log{E.n1+1/=N}− log{E.n0+1/=N}:

Under the model with the Prentice criterion we can write the effect intervention on the
observed true end point as

∆PC
obs = log

(∑
s

θsπ1s

)− log
(∑

s
θsπ0s

)
, .1/

where the subscript ‘obs’ refers to the fact that the true end point is observed and the superscript
‘PC’ indicates Prentice criterion. Now consider the situation that is of interest which uses the
surrogate end point in the validation trial and both the surrogate and the true end points in a
previous trial. We define the predicted intervention effect as

∆PC
pred = log

(∑
s

θÅ
s π1s

)− log
(∑

s
θÅ

s π0s

)
, .2/

where θÅ
s , the parameter from the previous trial, substitutes in equation (1) for θs, the param-

eter from the validation trial. Let nÅ
zst denote the counts in the previous trial and let

NÅ = nÅ
0++ = nÅ

1++. We assume that nÅ
zst follows a Poisson distribution, so .nÅ

zs1, nÅ
zs0|nÅ+s+/ ∼

binomial.θÅ
s , nÅ+s+/ and nÅ+s+ ∼Poisson.NÅπÅ+s/. The estimated predicted intervention effect is

∆̂PC
pred = log

(∑
s

θ̂Å
s π̂1s

)− log
(∑

s
θ̂Å

s π̂0s

)
, .3/

where θ̂Å
s =nÅ

+s1=nÅ+s+ and π̂zs =nzs+=N: Because var.π̂zs/=πzs=N and

var.θ̂Å
s /=E{var.θ̂Å

s |nÅ
+s+/}+var{E.θ̂Å

s |nÅ
+s+/}

=E

{
θÅ

zs.1−θÅ
zs/

nÅ+s+

}

≈ θÅ
zs.1−θÅ

zs/

NÅπÅ+s

, .4/

the asymptotic variance of ∆̂PC
pred under the delta method is

var.∆̂PC
pred/= 1

N

∑
z

∑
s

θÅ
s

2πzs

(∑
s

θÅ
s πzs

)2 + 1
NÅ

∑
s

θÅ
s .1−θÅ

s /

πÅ+s

(
π1s∑

s
θÅ

s π1s
− π0s∑

s
θÅ

s π0s

)2

: .5/

Implicitly assuming that θÅ
s = θs in a numerical example, Day and Duffy (1996) found that the

second term in equation (5) was negligible. In their calculations, Day and Duffy (1996) specified
a previous trial with NÅ >N and var.θ̂Å

s /<var.θ̂s/: To isolate the effect of the Prentice criterion,
we recomputed the second term in equation (5) assuming that NÅ = N and var.θ̂Å

s / = var.θ̂s/

and found that the second term was still negligible. Dropping the second term in equation (5),
Day and Duffy (1996) obtained the following approximate asymptotic variance:

var.∆̂PC
pred/≈ 1

N

∑
z

∑
s

θÅ
s

2πzs

(∑
s

θÅ
s πzs

)2 : .6/
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For comparison, Day and Duffy (1996) estimated the observed intervention effect by

∆̂DD
obs = log.n1+1=N/− log.n0+1=N/ .7/

with asymptotic variance

var.∆̂DD
obs /=∑

z

var.nz+1/

E.nz+1/2 = 1
N

∑
z

1∑
s

θsπzs
, .8/

where the superscript ‘DD’ indicates the Day and Duffy model. Importantly the Prentice crite-
rion is not invoked in equation (7) and only appears peripherally in equation (8) in the formula
for expected counts. Comparing equation (6) with equation (8), Day and Duffy (1996) obtained
the following paradoxes.

(a) Paradox 1: the variance of the estimated predicted intervention effect in equation (8) is
smaller than the variance of the estimated observed intervention effect in equation (6).

(b) Paradox 2: if the surrogate end point perfectly predicts the true end point, i.e. θs = 1 or
θs =0, the variance of the estimated predicted intervention effect is the largest.

Day and Duffy explained paradox 1 as follows:

‘the surrogates usually provide us with more information per subject than the true end point, in this
case a probability of death rather than the binary observation of death or no death’.

We think that a better explanation is that

(a) the estimate when using the surrogate end point to predict the true end point in equation
(3) assumes the Prentice criterion whereas

(b) the estimate with the observed true end point in equation (7) does not.

Because (a) postulates a more parsimonious model, the estimate has a smaller variance than
in (b).

We agree with the explanation of paradox 2 in Day and Duffy (1996):

‘The true end point is usually also influenced by numerous other factors which, given the surrogate,
are not further affected by treatment. Bias with respect to these is controlled for by randomization, but
they add random error to the true end point.’

We would even state that under the Prentice criterion the surrogate end point is the de facto end
point of interest and the true end point only adds noise.

2.2. Prentice criterion for both estimates
To check our conclusions about paradox 1, suppose that we invoke the Prentice criterion for
estimating the effect of intervention on the true end point. Instead of equation (7) the estimated
observed effect of intervention on the true end point is ∆̂PC

obs = log.Σs θ̂sπ̂1s/− log.Σs θ̂sπ̂0s/ with
asymptotic variance given by equation (5) with θÅ

s = θs, πÅ+s =π+s and NÅ = N: Suppose that
the previous trial has the same size and the same distribution of surrogate and true end points
as the validation trial so again θÅ

s = θs, πÅ+s =π+s and NÅ = N. Then E.∆̂PC
pred/ = E.∆̂PC

obs/ and
var.∆̂PC

pred/=var.∆̂PC
obs/. This result is sensible because the same information is used to estimate

∆PC
pred and ∆PC

obs . Thus there is no paradox under this scenario.

2.3. Prentice criterion for neither estimate
As another check of our assertion that assuming the Prentice criterion for equation (3) but not
for equation (7) leads to paradox 1, suppose that the Prentice criterion does not hold for either
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the observed or the predicted effect of intervention on the true end point. Let

θzs =pr.T =1|S = s, Z = z, J ≡validation/,

θÅ
zs =pr.T =1|S = s, Z = z, J ≡previous/:

If the Prentice criterion is not assumed, the observed and predicted intervention effects are

∆obs = log
(∑

s
θ1sπ1s

)− log
(∑

s
θ0sπ0s

)

and

∆pred = log
(∑

s
θÅ

1sπ1s

)− log
(∑

s
θÅ

0sπ0s

)
.9/

respectively. From equation (9), the estimated predicted intervention effect without the Prentice
criterion is

∆̂pred = log
(∑

s
θ̂Å

1sπ̂1s

)− log
(∑

s
θ̂Å

0sπ̂0s

)
, .10/

where θ̂Å
zs = nÅ

zs1=nÅ
zs+. The approximate asymptotic variance of the estimated predicted inter-

vention effect is

var.∆̂pred/≈ 1
N

∑
z

∑
s

θÅ2
zs πzs

(∑
s

θÅ
zsπzs

)2 + 1
NÅ

∑
z

∑
s

{θÅ
zs.1−θÅ

zs/=π
Å
zs}π2

zs

(∑
s

θÅ
zsπzs

)2 : .11/

Because equation (9) corresponds to a saturated model, the estimated observed intervention
effect is

∆̂obs = log.n1+1=N/− log.n0+1=N/, .12/

with asymptotic variance

var.∆̂obs/=∑
z

var.nz+1/

E.nz+1/2 = 1
N

∑
z

1∑
s

θzsπzs
: .13/

Suppose that the previous trial has the same size and the same distribution of surrogate and
true end points as in the validation trial. In this case NÅ = N, θÅ

zs = θzs and πÅ
zs = πzs, so

E.∆̂pred/=E.∆̂obs/ and var.∆̂pred/=var.∆̂obs/, which is what we would expect as the informa-
tion content is the same for estimating the predicted and observed intervention effects. Again
there is no paradox.

Interestingly, if the previous trial has a larger size but the same distribution of surrogate and
true end points as in the validation trial E.∆̂pred/=E.∆̂obs/ but var.∆̂pred/�var.∆̂obs/. Thus,
without assuming the Prentice criterion, it is possible for the estimated predicted intervention
effect based on the surrogate to have a smaller variance than the observed intervention effect.
However, this result differs from the paradox of Day and Duffy (1996).

3. Why the paradoxes in Begg and Leung (2000) differ

In the course of investigating the variance paradoxes in Day and Duffy (1996), Begg and Leung
(2000) derived similar paradoxes and concluded that ‘the conceptual strategy is flawed, and
that the fundamental problem is the Prentice criterion’. As we shall show, we believe that the
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paradoxes in Begg and Leung (2000) arise when one does not account for the variability of the
parameter estimates and hence have a different explanation from those of the paradoxes in Day
and Duffy (1996), even though the two sets of paradoxes appear similar.

3.1. Derivation of Begg and Leung (2000)
Begg and Leung (2000) presented the linear model Tzi =αz +βzSzi +"zi, where Szi and Tzi (with
realization szi and tzi) are continuous surrogate and true end points for individual i in interven-
tion group z in the validation trial. Under the model E."zi/=0, var."zi/=σ2

z and var.Szi/=σ2
Sz,

and therefore var.Tzi/ ≡σ2
Tz =β2

z σ2
Sz +σ2

z . To keep the presentation consistent with Section 2,
we slightly reformulate the derivation in Begg and Leung (2000). Under the aforementioned
linear model the observed intervention effect is

∆̂L
obs =α1 +β1s̄1 + "̄1 − .α0 +β0s̄0 + "̄0/, .14/

where the superscript ‘L’ indicates a linear model. Essentially, Begg and Leung (2000) defined
the predicted intervention effect as

∆̂BL
pred =E.∆̂L

obs|s̄0, s̄1/

=α1 +β1s̄1 − .α0 +β0s̄0/, .15/

where the superscript ‘BL’ indicates Begg and Leung. On the basis of equation (15) Begg and
Leung (2000) argued that paradox 1 arises from the mathematical identity

var.∆̂L
obs/=var{E.∆̂L

obs|s̄0, s̄1/}+E{var.∆̂L
obs|s̄0, s̄1/}

=var.∆̂BL
pred/+E{var.∆̂L

obs|s̄0, s̄1/}
�var.∆̂BL

pred/: .16/

Let ρ.T ,S/z denote the correlation between S and T in group z of the validation trial. From equa-
tion (15), var.∆̂BL

pred/ = Σz β2
z σ2

Sz. Substituting the identity β2
z = ρ2

.T ,S/zσ
2
Tz=σ

2
Sz into this latter

formula gives

var.∆̂BL
pred/=∑

z

σ2
Tz

N
ρ2

.T ,S/z: .17/

From equation (17) Begg and Leung (2000) noted a second paradox, related to paradox 2, that,
the greater the correlation between surrogate and true end points, the greater the variance of
the predicted true end point.

Importantly expressions (16) and (17) do not assume the Prentice criterion. Begg and Leung
(2000) subsequently introduced the Prentice criterion into the linear model ‘to provide rela-
tively simple insights into these counter-intuitive results’. To incorporate the Prentice crite-
rion they essentially assumed that β1 = β0 in equation (15). By standardizing the variance,
σ2

Tz = σ2
Sz = 1, and assuming the same correlation, ρ.T ,S/ = ρ.T ,S/z, they obtained E.∆̂BL

pred/ =
ρ.T ,S/{E.s̄1/−E.s̄0/}. This led to further paradoxes.

Thus, although the basic paradoxes in Begg and Leung (2000) are similar to those in Day
and Duffy (1996), they arise for a different reason that does not involve the Prentice criterion,
namely defining the predicted intervention effect in equation (15) as a function of unknown
parameters and not their estimates.
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3.2. Relevant derivation with parameter estimates
To confirm our beliefs about the cause of the Begg and Leung paradoxes, we rederived the vari-
ances by substituting parameter estimates for parameters. If our explanation for the paradoxes
is correct, the paradoxes should disappear. Note that we do not need to assume the Prentice
criterion. We started by replacing equation (15) by

∆̂L
pred = α̂Å

1 + β̂Å
1 s̄1 − .α̂Å

0 + β̂Å
0 s̄0/, .18/

where αÅ
z and βÅ

z are parameters in the previous trial and α̂Å
z and β̂Å

z are the estimates. Let Nz and
NÅ

z denote the size in group z in the new and previous trials respectively. Also let var.sÅzi/=σÅ2
Sz ,

and let ρÅ
.T ,S/z denote the correlation of S and T in the previous study. As derived in Appendix

A, the variance of equation (18) is

var.∆̂L
pred/=∑

z
ρ2

.T ,S/z

σ2
Tz

Nz
+∑

z
.1−ρÅ2

.T ,S/z/σ
Å2
Tz

{
σ2

Sz

σÅ2
Sz NzNÅ

z

+ .µSz −µÅ
Sz/

2 +σÅ2
Sz

σÅ2
Sz NÅ

z

}
, .19/

where µSz = E.szi/ and µÅ
Sz = E.sÅzi/. The first term in equation (19) is equation (17), which is

the variance of the estimate from Begg and Leung (2000); the second term in equation (19) is
the component of variance arising from the parameter estimates.

We check that equation (19) agrees with intuition. Suppose that in previous and valida-
tion trials the joint normal distributions of the data are the same, i.e. µz =µÅ

z , σ2
Sz =σÅ2

Sz and
ρ.T ,S/z =ρÅ

.T ,Sz/. Then equation (19) reduces to

var.∆̂L
pred/=∑

z

σ2
Tz

Nz
ρ2

.T ,S/z +∑
z

σ2
Tz

Nz

Nz +1
NÅ

z

.1−ρ2
.T ,S/z/: .20/

If the previous and validation trial have essentially the same size .NÅ
z = Nz + 1/, var.∆̂L

pred/ =
var.∆̂L

obs/=Σzσ
2
Tz=Nz, as expected. Intuitively, the critical sample size is NÅ

z =Nz +1 rather than
NÅ

z = Nz because ∆̂L
pred involves two parameters per group, αz and βz, whereas ∆̂L

obs requires
only one, the mean. If the previous trial were larger than the validation trial .NÅ

z >Nz +1/, then,
regardless of ρ.T ,S/z, var.∆̂L

pred/�var.∆̂L
obs/. Thus, if the variance of the estimated parameters

is incorporated in the calculations of Begg and Leung (2000), the paradoxes in Begg and Leung
(2000) disappear.

4. Conclusion

We found that the paradoxes in Day and Duffy (1996) arise by comparing an estimate using
the surrogate end points that assumes the Prentice criterion with an estimate using the true end
point that does not assume the Prentice criterion. If both estimates either assume or do not
assume the Prentice criterion there is no paradox. We also found that the paradoxes in Begg
and Leung (2000), although apparently similar to those in Day and Duffy (1996), arise for a
different reason that does not involve the Prentice criterion, namely not accounting for the var-
iability in parameter estimates. When we account for the variability in the parameter estimates,
the paradoxes in Begg and Leung (2000) disappear. We conclude that there are no problems
with the inferential foundations in Day and Duffy (1996), and meta-analytic extensions of the
approach of Day and Duffy (1996) can be developed with confidence.

We caution that, regardless of the model, there are two inherent limitations in evaluating inter-
ventions by using surrogate end points. First, there is an inherent uncertainty about whether or
not parameters that are estimated from previous trials apply to an application trial. Second, a
surrogate end point for benefit does not provide information about possibly harmful side-effects
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that could occur after the surrogate end point has been observed and before the true end point
has been observed (Baker and Kramer, 2003). Thus there will always be some caution in the
use of surrogate end points to evaluate interventions. Nevertheless, there are some situations,
such as preliminary studies or studies to refine recommendations for interventions, where the
benefits of using a surrogate end point would probably outweigh these cautions.
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Appendix A

For computing the variance of ∆̂L
pred, it is convenient to introduce matrix notation. Let θÅ

z = .αÅ
z , βÅ

z /.
Also let ∆̂L

pred = S̄1θ̂
Å
1 − S̄0θ̂

Å
0 , where S̄z = .1, s̄z/ and θ̂

Å
z = .α̂Å

z , β̂Å
z /. Let SÅ

z denote a matrix of data
from the previous trial with rows .1, sÅzi/ and let tÅz denote a column vector with elements tÅzi . The least
squares estimate of θÅ

z is θ̂
Å
z = .SÅT

z SÅ
z /−1SÅT

z tÅz with variance var.θ̂
Å
z / = σ2

"z.S
ÅT
z SÅ

z /−1. Let N and NÅ

denote the size in each group in the validation and previous trials respectively (with, for simplicity, the
same sample size in each group). Define E.szi/=µSz, E.sÅzi/=µÅ

Sz , var.szi/=σ2
Sz and var.sÅzi/=σÅ2

Sz , and let
ρ.T ,S/z and ρÅ

.T ,S/z denote the correlations in the validation and previous studies respectively. The variance of
∆̂L

pred is

var.∆̂L
pred/=var.S̄1θ̂

Å
1 /+var.S̄0θ̂

Å
0 /,

where

var.S̄zθ̂
Å
z /=varS̄z

{Eθ̂
Å
z
.S̄zθ̂

Å
z |S̄z/}+ES̄z

{varθ̂
Å
z
.S̄zθ̂

Å
z |S̄z/}

=var.S̄zθz/+E{S̄
T
z var.θ̂

Å
z /S̄z}

=θT
z var.S̄z/θz +σÅ2

"z E[S̄
T
z {E.SÅT

z SÅ
z /}−1S̄z]

=θT
z var.S̄z/θz +σ2

"zE.S̄
T
z AÅ

z S̄z/, .21/

where AÅ
z =E.SÅT

z SÅ
z /−1. The first term in equation (21) is

θT
(0 0

0 σ2
Sz=Nz

)
θ =β2

z σ
2
Sz=Nz: .22/

Tocompute thesecondterminequation(21),weuse theresult thatE.YTQY/= tr{var.Y/Q}+E.Y/QE.Y/T,
which gives

σ2
"zE.S̄

T
z AÅ

z S̄z/=σ2
"z[tr{var.S̄z/A

Å
z }+E.S̄

T
z /AÅ

z E.S̄
T
z /] .23/

To simplify equation (23), we write

AÅ
z =E


 NÅ ∑

i

sÅzi∑
i

sÅzi

∑
i

sÅ2
zi




−1

= 1
NÅ

z

(
σÅ2

Sz +µÅ2
Sz −µÅ

Sz−µÅ
Sz 1

) 1
σ2

Sz

,

which implies that

tr{var.S̄z/A
Å
z }= tr

{(0 0
0 σ2

Sz=Nz

) 1
NÅ

z

(
σÅ2

Sz +µÅ2
Sz −µÅ

Sz−µÅ
Sz 1

) 1
σ2

Sz

}

= σ2
Sz

σÅ2
Sz NzNÅ

z

, .24/
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E.S̄
T
z /AÅ

z E.S̄
T
z /= .1, µSz/

1
NÅ

z

(
σÅ2

Sz +µÅ2
Sz −µÅ

Sz−µÅ
Sz 1

) 1
σ2

Sz

( 1
µSz

)

= .µSz −µÅ
Sz/

2 +σÅ2
Sz

σÅ2
Sz NÅ

z

: .25/

Substituting equations (24) and (25) into equation (23) and then into equation (21) gives

var.S̄zθ̂
Å
z /= β2

z σ
2
Sz

Nz

+σÅ2
"z

{
σ2

Sz

σÅ2
Sz NzNÅ

z

+ .µz −µÅ
z /2 +σÅ2

Sz

σÅ2
Sz NÅ

z

}
: .26/

Because β2
z = ρ2

.T ,S/zσ
2
Tz=σ

2
Sz and σÅ2

Tz =βÅ2
z σ2

Sz +σ2
"z = ρÅ2

.T ,S/zσ
Å2
Tz +σÅ2

"z , we have σÅ2
"z = .1 − ρÅ2

.T ,S/z/σ
Å2
Tz , and

we can write equation (26) as

var.S̄zθ̂
Å
z /=ρ2

.T ,S/z

σ2
Tz

Nz

+ .1−ρÅ2
.T ,Sz//σ

Å2
Tz

{
σ2

Sz

σÅ2
Sz NzNÅ

z

+ .µz −µÅ
z /2 +σÅ2

Sz

σÅ2
Sz NÅ

z

}
: .27/

This leads to equation (19) in the text.
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